
April 2021

EPL, 134 (2021) 26001 www.epljournal.org

doi: 10.1209/0295-5075/134/26001

Focus Article

Experimental observation of turbulent coherent structures

in a superfluid of light(a)
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Abstract – We experimentally explore the rich variety of nonlinear coherent structures arising in
a turbulent flow of superfluid light past an obstacle in an all-optical configuration. The different
hydrodynamic regimes observed are organised in a unique phase diagram involving the velocity of
the flow and the diameter of the obstacle. Then, we focus on the vortices nucleated in the wake
of the obstacle by investigating their intensity profile and the dependence of the radius of their
core on the healing length. Our results pave the way for further investigations on turbulence in
photonic superfluids and provide versatile experimental tools for simulating quantum transport
with nonlinear light.
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Introduction. – Turbulence appears in ordinary flu-
ids as simple as air or water, but also in astrophysical
systems [1], plasmas [2] and superfluids [3,4]. The main
features shared by the different types of turbulence are
the unpredictable and irregular character of the system
dynamics far from equilibrium, and the interplay between
many different physical length scales through highly non-
linear processes [5]. Quantum turbulence mainly differs
from turbulence in ordinary fluids because, in quantum
fluids, vorticity is quantised and constrained to appear at a
single characteristic length scale [6]. Examples of quantum
fluids displaying quantum turbulence are superfluid he-
lium [7,8], atomic Bose-Einstein condensates [6,9,10] and
quantum fluids of light [11].

Merging nonlinear optics and quantum hydrodynamics,
quantum fluids of light have gained great interest in the
past few years. Indeed, in properly engineered experi-
mental optical devices, photons can acquire an effective
mass and be in a fully controlled effective interaction.
They behave collectively as a quantum fluid, and share
remarkable common features with other systems such as
superfluidity and quantum turbulence. Quantum fluids of
light have been investigated in one, two and three effective
spatial dimensions (1, 2 and 3D) in various photonic
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platforms. Among the latter, the major ones are semicon-
ductors [11–20], optical microcavities [21–23], and cavity-
less bulk optical media [24–29] where the light propagation
axis plays the role of time, as sketched in fig. 1.

In the latter propagating geometry (and in a regime
where quantum fluctuations [29] are negligible), fluids of
light have been produced in several nonlinear media rang-
ing from liquid crystals [30,31] to thermal liquids [32,33]
and atomic vapours [34–36], but also photorefractive (PR)
crystals [37–40] in which a quantitative measurement of
the normal/superfluid transition has been recently per-
formed [41]. These optical systems allow for a full control
and flexibility in the generation, manipulation and obser-
vation of photon fluids in various dimensions. In addition,
the nonlinear interactions and the external potentials ex-
perienced by the fluid can be precisely customised. Conse-
quently, they consist in versatile systems, fully designated
to investigate light hydrodynamics in different kinds of
environments, from the simplest case of a homogeneous
medium [35,36] to more complex landscapes with a single
obstacle [33,41] or spatial disorder.

One of the simplest way to generate turbulence in these
systems is to insert an obstacle in the fluid flow. By ac-
curately tuning its velocity, the fluid enters a turbulent
regime, giving birth to nonlinear coherent structures rang-
ing from vortex pairs to dark solitons and other nonlinear
excitations [19,20,42,43].

Although optical vortices have been widely studied
within the last three decades [44,45], their generation
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Fig. 1: (a) Sketch of the experimental setup. The narrow red beam creates a z-invariant localised optical defect which acts as a
potential barrier in the transverse plane (x, y). The large green beam creates a 2D fluid of light evolving along the z-axis. The
input angle θ of the green beam with respect to the red beam is tuned via a spatial light modulator (SLM) conjugated with a
digital micro-mirror device (DMD). It controls the transverse velocity of the fluid of light (indicated by the green arrow). Both
are propagating through a biased nonlinear SBN crystal and are imaged via a microscope objective on a sCMOS camera. Beam
splitters (BS) are used to get a reference beam to build the interferogram and recover both the amplitude and the phase of the
fluid of light. (b) Three-step sketch of the evolution of the 2D fluid of light (green) past the obstacle (red). The propagation
coordinate z plays the role of time. The third step shows the formation of a typical interference pattern upstream and a
vortex-pair generation downstream from the obstacle.

through the process of turbulence have been subjected
to few studies, either numerical [24,42,46–49] or experi-
mental [19,20,50–54]. Related works on the Berezinskii-
Kosterlitz-Thouless transition and its underlying vortex
dynamics have been recently brought to the photonic
realm [40,55–58].

In this letter, we propose a systematic experimen-
tal study of the different nonlinear coherent struc-
tures —considered as a route toward fully developed
turbulence— generated in the wake of a 2D fluid of light
passing an obstacle in a propagating geometry. We gather
our experimental data in a diagram within regions of ap-
parition of the different nonlinear hydrodynamic struc-
tures as a function of the fluid velocity and the obstacle
diameter. We dedicate the last section to a detailed inves-
tigation of the intensity profiles of isolated vortices and of
the dependence of their radius on the healing length.

Fluid reformulation of light propagation. – The
propagation in the positive-z direction of a continu-
ous laser beam along a nonlinear PR crystal with a
z-invariant optical obstacle is ruled in the scalar, paraxial
and monochromatic approximations by the following 2D
nonlinear Schrödinger equation for the complex envelope
ψf(r = (x, y), z) of the optical field [59]:

i∂zψf = −
1

2nekf
∇2

r
ψf − kf∆n(If)ψf − kfδnψf−

iα

2
ψf. (1)

The different quantities involved in this equation are de-
fined in the following lines. The analogy with the gen-
uine Gross-Pitaevskii equation for the wave function of a
quasi-2D weakly interacting Bose-Einstein condensate [6]
is a well-known fact [22–25]. Importantly, the behaviour

of the laser beam in the transverse r plane mimics the flow
of such a matter fluid past an obstacle, the propagation
coordinate z playing the role of time, thus defining a
fluid of light [27]. In this context, the propagation con-
stant nekf = 2πne/λf of the beam of wavelength λf in
the medium of refractive index ne is the optical analog of
the atom mass. On the other hand, ∆n(If) < 0, with
If = |ψf|

2, responsible for the defocusing nonlinear re-
sponse of the crystal, mimics repulsive photon-photon in-
teractions and acts over the whole transverse extension of
the fluid of light. In this quantum hydrodynamic descrip-
tion of the laser beam, the optical intensity If corresponds
to the local density of the fluid of light and the gradient
of the optical phase arg(ψf) gives the local flow velocity
v = ∇rarg(ψf)/(nekf). In the paraxial limit, a uniform
initial velocity is given by the uniform phase of a plane
wave such as v ≃ θ/ne, with θ being the angle between
the beam and the z-axis (green beam of the bottom arm
in fig. 1(a)). Then, the term proportional to α > 0 phe-
nomenologically describes absorption losses. Finally, in
the last term of eq. (1), δn(r) is a z-invariant refractive-
index depletion which is photo-induced by a second laser
beam (red beam in fig. 1(a)). This emulates the pres-
ence of a penetrable obstacle for the fluid of light. The
height and the size of such a potential barrier depends
on the intensity Iob and the diameter d of this secondary
laser beam [41]. We also define, away from the obsta-
cle where the fluid of light remains unperturbed, an ana-

log healing length ξ = [(1 + If/Isat) /
�

nek
2
f |∆n(If)|

�1/2
,

which corresponds to the smallest length scale for density
modulations in the transverse plane, and an analog sound
velocity cs = (nekfξ)

−1 = [|∆n(If)|/ (ne (1 + If/Isat))]
1/2
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for the modulation waves of the fluid of light (Isat be-
ing the saturation intensity of the crystal, see the Sup-
plementary Material Supplementarymaterial.pdf (SM)
for a full derivation of these expressions). Both analog
quantities depend on the fluid density, and are then ex-
perimentally controlled via the intensity If.

Panels 1, 2 and 3 in fig. 1(b) correspond to three typi-
cal density snapshots of the evolution (along the z-axis) of
the fluid of light (green spots), flowing from left to right
(along the x-axis) around the obstacle (red spots). The os-
cillatory pattern and the density drops illustrated in the
third panel are particularly representative. The former,
reminiscent of interferences between the incident and re-
flected components of the green beam onto the red one,
corresponds, in the hydrodynamics language, to linear or
cnoidal periodic excitations radiated far away from the
obstacle [60]. The latter is representative of a regime of
turbulent flow characterised by the nucleation of vortex
pairs [25], which one studies in this letter.

Experimental implementation. – In the experi-
ments, the nonlinear medium considered is a 5×5×20mm3

strontium barium niobate (SBN:61) photorefractive crys-
tal additionally doped with cerium (0.002%) to enhance
its photoconductivity. Because of the saturable nature of
the PR effect, we take care of always working in a Kerr-like
regime (∆n(If) ∝ If) where the correspondence between
eq. (1) and the Gross-Pitaevskii equation is strict (see SM
for details). Moreover, the losses α ≃ 0.8 dB/cm. De-
spite they are non-negligible, the dynamics of the fluid
is adiabatic (indeed, α is smaller than the “chemical po-
tential” kf|∆n(Ifmax

)| ≃ 241.7 dB/cm). In this case, the
observables measured at z = L can be analysed within
the framework of eq. (1) with α = 0 provided the injected
intensity I(z = 0) is replaced with I0 = I(0) e−αL, which
we do in our work. The fluid of light laser beam is a
cw source delivering a collimated Gaussian beam with a
460 μm 1/e2 radius at λf = 532 nm. Note that the density
used to define ξ and cs corresponds to the maximal inten-
sity. Within a range up to 50 μm from the beam center,
the relative shifts ∆ξ/ξ and ∆cs/cs are both estimated to
be 2%. This values are small enough to consider an homo-
geneous density in this region of interest. The input angle
θ is tuned from 0 to ±23 mrad by means of a spatial light
modulator (SLM) conjugated with a digital micro-mirror
device (DMD) optical system.

The same conjugated devices are used to create the
z-invariant obstacle which consists in a diffraction-free
Bessel cw laser beam operating at λob = 633 nm. The
diameter d of the obstacle (defined as the diameter of
the first zero of the rotation-invariant Bessel distribution)
can be adjusted from 10 to 90μm. Both laser beams are
linearly polarised along the extraordinary axis to max-
imise the PR effect. The photo-induced refractive-index
modification is of the order of −10−4. Note that this typ-
ical value leads to a ratio between the potential and inter-
action energies around 10. A detailed characterisation of

the nonlinear optical response of the PR crystal has been
addressed in [61] (see also SM).

For the detection part, an imaging system composed
of a ×20 microscope objective (NA = 0.4) and of a sC-
MOS camera allows to get the spatial distribution of the
near-field intensity of the laser beams at the output of
the crystal. A narrow bandpass red filter is used to reject
the obstacle beam. The interference between the fluid of
light beam and a reference beam, recombined before the
camera, allows to obtain an interferogram (the fringes are
separated by a 2π spatial phase shift). Using the off-axis
holography method [62,63], both the amplitude and the
phase of the optical fields can be reconstructed.

To summarise, our experimental apparatus makes it
possible to i) prepare the initial condition of the 2D fluid
of light, ii) design an obstacle with controllable strength
and size, and iii) measure the hydrodynamic parameters
of the fluid of light, i.e., both its density and velocity, at
the output of the nonlinear crystal.

Diagram of existence of the turbulent coherent

structures in the fluid. – The Mach number, defined
as M = v/cs, is a crucial quantity that allows to run
through all the different hydrodynamic regimes of the fluid
of light. In our optical setup, M typically varies from
0 to 3. As shown in [41], the transition from the nor-
mal (i.e., nonsuperfluid but stationary) to the superfluid
regime may occur at M < 1. This deviation from the
Landau criterion [64] is actually not surprising. Indeed,
this criterion, which predicts the transition at M = 1, is
intrinsically valid for small obstacles and conservative dy-
namics. Therefore, it cannot be strictly applied to our
setup where the optical defect is not of weak amplitude
and where photon absorption is non-negligible.

Beyond Landau’s theory, the critical velocity for su-
perfluidity is smaller than the speed of sound and a
nontrivial function of the obstacle parameters (see, e.g.,
refs. [28,65–68] for related studies in 1D), and the very
nature of the nonsuperfluid/superfluid transition is modi-
fied by the appearance of an intermediate non-stationary
turbulent regime. The latter is characterised by the ad-
vent of nonlinear coherent structures such as dark solitons
undergoing a snake instability before breaking into pairs of
quantised vortices of opposite circulations [69]. All these
structures are expected to depend on photon absorption.
However, it is known that superfluidity is qualitatively ro-
bust against dissipation, as shown, e.g., in refs. [28,70] for
other dissipation schemes.

The aim of this section is to measure such a phase di-
agram by systematically varying the Mach number of the
flow, v/cs, and the obstacle diameter normalised to the
healing length, d/ξ, which is here the parameter used to
vary the state of the obstacle, as explained below. Most
theoretical studies build a diagram of existence of the
different hydrodynamic coherent structures emerging in
the fluid by varying the Mach number, as we do, and
the height of the obstacle potential [28,65,66,71]. In our
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Fig. 2: (a)–(f) Images of the intensity (top row) and of the phase (bottom row) of the 2D fluid of light at the output of the
nonlinear crystal for various values of the Mach number v/cs and of the obstacle diameter d. The fluid of light flows from left to
right and the central position of the diameter-varying obstacle is indicated by the red crosses. Each image is 245 μm×245 μm.
The intensity images are normalised to their maximum value. For better visualisation of the phase images, the linear phase
gradient corresponding to the initial fluid of light velocity is numerically removed. (a) Superfluid phase, d = 50μm. (b)–(d)
Regime of vortex-pair generation. d = 55, 65, 80μm for (b), (c) and (d), respectively. (e) Regime of instability, indicated by the
white arrow. d = 80μm. (f) Solitonic regime. A dark soliton is indicated by the white arrow. d = 90μm. No phase singularities
are associated to the structures observed in (e) and (f). (g) Zoom of the phase image ((d), bottom panel). The region of interest
corresponds to the two clear localised intensity drops observed in the intensity image ((d), top panel). The phase derivative
(i.e., the fluid of light velocity field, see the text) stream plot (black lines and arrows) indicates that the vortices of the pair
have opposite circulations.

experimental apparatus, the latter variation would be per-
formed by changing the depth of the refractive-index mod-
ulation δn(r) induced by the obstacle beam. However,
the range of accessible values is rather limited. Moreover,
changing the value of the optical index requires to adapt in
a synchronised manner the intensities of both the fluid of
light and obstacle beams (see SM for details). But chang-
ing the intensity of the fluid of light beam would impact
the values of ξ and cs, and thus dramatically change the
global state of the system. In this study we then focus
on varying another intrinsic parameter of the obstacle,
namely, its diameter d, which has the advantage of not
altering the state of the incident fluid. This configuration
has also been studied theoretically [72,73], but has, to our
knowledge, never been explored experimentally.

The fluid of light and obstacle beam intensities are
respectively fixed at If = 42 mW/cm2 and Iob =
4Pob/(πd

2) = 510mW/cm2 at z = 0, where Pob is the
input power of the obstacle beam. If above provides con-
stant values for ξ and cs while Iob is kept constant by
simultaneously varying Pob and d. The refractive index
depletion corresponding to the obstacle is then fixed at a
value δn = −1.7 × 10−4 = 0.8 δnmax, where δnmax is the
maximum refractive-index variation for the used experi-
mental parameters. To be clear, the experimental param-
eters directly relevant for the study of the hydrodynamics
of the fluid of light thus are i) the input angle θ of the beam
which generates it, corresponding to the flow velocity v,
and ii) the diameter d of the beam producing the optical
defect, which controls the effect of the obstacle on the flow.

Figure 2 shows typical images of the fluid of light
beam intensity distribution (top row) and the correspond-
ing reconstructed phase (bottom row). First, panel (a)
corresponds to the superfluid phase. It presents an

absence of long-range radiation from the obstacle [13,41].
In the other panels, we observe optical vortices with their
distinctive behaviour: a deep localised intensity drop as-
sociated with a phase singularity. To be more precise,
one observes in panel (b) a pair of vortices created at the
boundary of the obstacle, downstream. They might not
be clearly visible in the intensity image, but appear un-
ambiguously in the phase representation. In panels (c)
and (d), the same description can be made, both on the
intensity and phase distributions, but respectively for two
and three pairs of vortices. It is worth noting that the
vortices always appear in the wake of the obstacle and
in pairs with opposite circulations

�

v · dr = ±2π/(nekf),
where we recall that v = ∇r arg(ψf)/(nekf) is the local
velocity of the fluid. They arise to a certain extent as
in classical hydrodynamics where Karman vortex streets
may appear in the wake of moving objects. This is illus-
trated by panel (g) which is a zoom of the phase image of
panel (d). The region of interest corresponds to the two
clear localised intensity drops observed in the top panel
(d). The stream plot of the phase derivative, i.e., of the
velocity (black lines and arrows), indeed indicates the op-
posite circulations of the vortices. This behaviour is in
good qualitative accordance with theoretical and numer-
ical studies reported in the literature (see [74] for a ped-
agogical viewpoint on the subject). In panel (e), one can
still picture vortices in the phase, but also an oscillating
structure (indicated by the white arrow in the intensity),
resulting on the merging of two vortices, instability inves-
tigated in refs. [75,76]. In the last panel (f), this instability
moves away from the obstacle, and forms likely a dark soli-
ton (indicated by the white arrow). Note that the images
corresponding to the normal regime, which consist in a sta-
tionary pattern made of nonlinear interferences upstream
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Fig. 3: Diagram of the observed phases of the fluid of light,
ranging from normal (white) to superfluid (dark green). The
phases in between (green color scale) correspond to the obser-
vation of turbulent coherent structures: vortex pairs, instabili-
ties and solitons. Circles are experimental data delimiting the
different phases. The squared letters in each phase correspond
to the images in fig. 2.

from the obstacle, are not shown here as this regime has
been investigated in a previous study [41].

A systematic analysis of such images for various v/cs
and d/ξ allows us to build, in the spirit of refs. [72,73], a
(d/ξ, v/cs) diagram displaying the different hydrodynamic
behaviours that the fluid of light exhibits when flowing
past the obstacle. This diagram is shown in fig. 3. Each
region is represented by a color (green color scale) and
each point corresponds to the apparition of a new dis-
tinct feature. For instance, the dark green points, linked
by white segments to guide the eye, correspond to the
set of flow and obstacle parameters for which one vortex
pair suddenly appears by increasing the flow velocity. The
squared letters indicate the location on the diagram of the
intensity and phase images of fig. 2. Note however that
the precise shape and location of the diagram boundaries
depend on the crystal length, which sets the total propa-
gation time of the fluid. Indeed, the turbulent structures
observed need a finite time (which depends on the fluid
and obstacle parameters) to be created, which means that
their number will scale with the ratio of the system size
to their respective nucleation time.

As expected, this diagram emphasises the existence of
three main regimes of transport, namely, a stationary
non-superfluid, normal regime at high velocity (white), a
non-stationary turbulent regime at intermediate velocity,
where nonlinear structures such as vortices are abundant
(intermediate green colors), and the superfluid regime
which is characterised by the absence of long-range ex-
citations (dark green). In addition, few salient features
can be commented.

First, we clearly observe that as d/ξ increases, the tur-
bulent regime becomes predominant. This regime tends
to vanish for low d/ξ, as reported in our previous experi-
ment [41] on the normal/superfluid transition triggered by

a narrow obstacle (d ≃ ξ). By interpolation, we speculate
that the merging point of the upper (normal/turbulent)
and lower (turbulent/superfluid) separatrices is reached at
a nonzero value of d/ξ due to photon absorption, as sug-
gested in previous theoretical works on low-dimensional
dissipative condensates [28]. A full theoretical under-
standing of these phase boundaries is however still lacking
and is currently subjected to further investigation. Sec-
ond, for intermediate values of d/ξ, roughly from 4.5 to
6.5, the turbulent phase mainly consists in the genera-
tion of vortex pairs and both normal (white) and super-
fluid (dark green) phases still exist at respectively high
and low flow velocities. Then, for larger d/ξ, more com-
plex turbulent behaviours appear, involving more vortex
pairs, instabilities or solitonic structures. For the value
of v/cs investigated in the experiment, we were not able
to recover a stationary nonsuperfluid phase for a wide ob-
stacle. Note that the three vertical transitions visible in
fig. 3 are actually not as sharp as represented on the dia-
gram. Experimental data are missing in these areas and
the analysis of these transition is still under investigation.
The diagram of fig. 3 reveals the rich variety of the tur-

bulent regimes appearing in a 2D fluid of light in a propa-
gating geometry. Although these different behaviours were
one by one studied both experimentally and theoretically
in ultracold-atom [6] and cavity-polariton [11] physics, this
is the first time, to the best of our knowledge, that this rich
zoology is experimentally explored in its entirety in the
context of 2D fluids of light. Here, we gather all the differ-
ent behaviours in one unique general diagram involving the
two main parameters of the constrained flow: the Mach
number and the obstacle diameter. It allows us to predict,
for a given Mach number and a given obstacle diameter,
the nature of the flow (normal/turbulent/superfluid) and
the possible turbulent structures that will be supported
by the system. Many aspects are still under investiga-
tion. In the following, we will focus on a detailed study
of the spatial profiles of isolated optical vortices and their
dependence on the healing length.

Analysis of an isolated vortex. – As already dis-
cussed, one manifestation of quantum turbulence in 2D
fluids of light is the generation of optical vortices charac-
terised by a vanishing intensity associated with a phase
singularity. The intensity profile of such a coherent struc-
ture is phenomenologically expected to vary over a length
scale close to the healing length ξ [47,77,78], irrespective
of the external conditions (such as the obstacle shape and
strength). We roughly identify the intensity profile Iv(r)
of the vortices nucleated in the wake of the obstacle to
the one they would approximately have if they were iso-
lated [6]:

Iv(r) = I0
(r/ξ)2

1 + (r/ξ)2
. (2)

In our experiment, the parameter I0 is fixed as the inten-
sity of the fluid of light at the exit of the crystal and in the
absence of the obstacle. Defining the vortex radius rv at
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Iv(rv)/I0 = s, where s is an arbitrary parameter smaller
than 1, we readily get

rv(s) =

�

s

1− s
ξ. (3)

Equation (3) predicts a linear dependence of the vortex
core radius on the healing length, and the proportionality
coefficient directly depends on the intensity threshold s
where the radius is measured.

To experimentally investigate the vortex size as a func-
tion of the healing length in a fluid of light and show that
it depends only on this parameter, we track and study
them under various conditions. More precisely, the fluid
of light intensity is varied from 6 to 16mW/cm2 to get dif-
ferent values of ξ, ranging from 15 to 30μm. We performed
different sets of measurements, for different values of the
obstacle diameter and strength. As detailed in the SM,
changing the fluid of light beam intensity directly affects
the obstacle strength. To make sure that only ξ is changed
when the fluid of light density varies, the obstacle beam
intensity is consequently adjusted. Here it ranges from 1.5
to 4W/cm2, which corresponds to refractive-index varia-
tions from 1.17 to 2.09 × 10−4 thus ranging from 0.7 to
0.8 δnmax. The obstacle diameter varies from 60 to 80 μm
and the fluid of light velocity is fixed to 2×10−3.

As seen in the previous section both intensity and phase
are measured. To extract the vortex sizes from each im-
ages, we perform the following processing. First, the vor-
tex is isolated from its environment (e.g., a neighbouring
vortex or any other intensity fluctuation). To do so, the
position of the vortex core is tracked from the phase singu-
larity and the intensity image is cropped to 25μm×25μm
(see fig. 4(a)). Second, we perform a 2π azimuthal inte-
gration of the intensity profile. The profile is normalised
to the unperturbed intensity I0 in the absence of obstacle.
The corresponding dimensionless radial profile I(r)/I0 is
plotted in fig. 4(b) (green data). Then, the radius of the
vortex rv is measured at s = I(r)/I0 = 0.2 (red dashed
horizontal and vertical lines in fig. 4(b)). Above this
threshold, the profiles of vortices with the highest radii
are drastically affected by the environment. The theo-
retical prediction is represented by the gray dashed line,
calculated from eq. (2) with ξ = 12.5μm, the measured
experimental value for the vortex pictured in fig. 4(a).

All the measured vortex radii are plotted in fig. 4(c) as
a function of ξ. The error bars corresponds to ±1 pixel
uncertainty when measuring the vortex center. The filled
red circle highlights the measure of the vortex radius de-
picted in fig. 4(a) and we used the corresponding heal-
ing length to plot the theoretical prediction in fig. 4(b).
For comparison, the prediction, rv = 0.5ξ for s = 0.2
in eq. (3), is plotted (solid red line). Interestingly, the
experimental data are in fairly good agreement with the
theoretical prediction of a linear dependence of the vortex
radii on the healing length. However, a linear fit of our
data, in dotted style in 4(c), shows that the theoretical
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Fig. 4: (a) Intensity distribution of an isolated vortex nor-
malised to the maximum value of the image. The white bar
corresponds to 10μm. (b) Intensity radial profile I(r) obtained
after an azimuthal integration (see (a)). The profile is nor-
malised by the intensity I0 measured in the absence of any ob-
stacle. The green curve corresponds to the experimental data.
The dashed gray curve is the approximate theoretical intensity
profile Iv(r) obtained for ξ = 12.5μm. The vortex radius rv
is measured at the threshold s = I(r)/I0 = 0.2. The corre-
sponding value is reported in (c) (filled red circle). (c) Vortex
radius vs. ξ. The red circles correspond to experimental data.
The error bars are the standard deviations of the vortex radii
measured on the same image. The red line corresponds to the
theoretical law, rv = 0.5ξ obtained for s = 0.2 and the dot-
ted red line shows the linear dependence of the experimental
points.

and experimental slopes slightly differ. This disagreement
is still under investigation. A potential cause is that the
close environment of the vortices strongly modifies their
profiles, thus invalidating (2), approximately valid for an
isolated vortex in a homogeneous environment. Plotting
separately the data corresponding to a given experimental
configuration (e.g., fixed obstacle strength and diameter)
does not exhibit some specific tendency. All experimen-
tal points converge to the same behaviour, meaning that,
as discussed above, the vortex size only depends on the
main characteristic length scale of the nonlinear system,
namely, the healing length. Neither the obstacle diameter
and strength nor the initial fluid velocity seem to strongly
influence the size of the vortex core.

Conclusion. – In this letter, we have presented an ex-
perimental study of the breakdown of superfluidity and
of the various regimes of transport in a 2D fluid of light
in a propagating geometry. First, we have experimentally
built a phase diagram gathering the different types of flow
and coherent nonlinear excitations characterising them, in
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between the stationary normal and superfluid phases at
high and low velocity, respectively. Second, we have pro-
posed a detailed study of the radii of the vortices nucleated
downstream from the obstacle, and showed a good qual-
itative agreement with theoretical estimates. Our exper-
imental platform gives the opportunity to study the rich
nonlinear hydrodynamics of a superfluid of light flowing
past a single optical defect. However, there is no major
experimental restriction to design more complex environ-
ments made of randomly distributed obstacles, paving the
way to the study of the transport of superfluid light in
disordered landscapes.
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